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Ahuact .  Using the invem scattering transform a e  found oneparameter and the brcathcr- 
like four-parameter soliton solutions o r a  perturbed nonlincar Schrndingcr equation which 
describes the pulse propagation in optical fibrcs in the femtosecond regime. 

Optical solitons in fibres are pulses which propagate without any change in pulse shape 
or intensity. Due to their remarkable stability properties, optical solitons are now at 
the centre of an active research field of nonlinear wave propagation in optical fibres 
[ 1-91, Recently [4-8], by using an asymptotic penurbation technique it was shown that 
the pulse propagation in optical fibres in the femtosecond regime can be fairly described 
by the perturbed nonlinear Schrodinger equation (PNLSE): 

where q represents a normalized complex amplitude of the pulse envelope, Z is a 
normalized distance along the fibre, T is  the normalized retarded time (we employ a 
frame of reference moving with the pulse with its group velocity), E is a small parameter 
and @, , pZ, p3 aie the real n o d i z e d  parameters which depend on the fibre character- 
istics (@, is the coacient of the linear higher order dispersion effect and @?, p3 are 
overlap integrals [6]). A new model, to include saturation effects of the Kerr  non- 
linearity, has been recently derived [lo], in which the governing equation is a combina- 
tion of the exponential nonlinear Schr6dinger equation (NLSE) and the derivative one. 
For E=O in equation (1) we obtain the standard NLSE, which is one of the complete 
integrable nonl ink  partial differential equations. Its solutions can be obtained by 
different methods, e.g., by using the inverse scattering transform (IST) [Il-171, the Lie 
group theory [18], by constructing’a certain completely integrable finite dimensional 
dynamic system whose solutions determine the exact solutions of the NLSE [19-211, etc. 
We mention also the recent work on IST perturbation theory for soliton propagation 
and the first and the second-order perturbation expansion for soliton, propagation in 
optical fibres [22]. 

$Permanent address: Institute of Atomic Physics, Department of Theoretical Physics, PO Box MG-6. 
Bucharest, Romania. 
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To the best of our knowledge for arbitrary parameters PI, p 2 ,  p2 the equation (1) 
is not completely integrable, but for an appropriate choice of these parameters it can 
be integrated by the IST. Thus the cases when :p2 :p,=O : 1 : 1 (the derivative NLSE 
typeI), p1:p2:p3=O:1:0 ( t h e d e r i v a t i v e ~ ~ s ~  typeII) andp1:/32:P3=1:6:0(the 
Hirota equation) were solved in [23], [24] and 1251, respectively. 

Recently, in 1261 it was shown that the case PI : p 2  :,E3= 1 :6:3 is also integrable by 
using the IST. We mention that in 1261 the authors did not obtain the most general 
singlesoliton solution because they did not take properly into account the symmetry 
properties of the matrix U in the U-Vrepresentation for the equation (1). 

In the present letter we find for this case the general singlesoliton solution classified 
by the following criteria: 

(i) the diagonal element of the scattering matrix a33(c) has only one zero on the 
imaginary axis; 

(ii) the diagonal element of the scattering matrix as&) has two zeros located at 
the positions symmetric with respect to the imaginary axis. 

With the specific choice of the parameters which describe the general solution we 
find the 'breather' single-soliton solution for (1). 

In order to integrate (1) in the case PI :p2:p3=1 :6:3 we make, as in 1261, the 
following transformation: 

u(x,t)=q(T,Z)exp -- T-- M ~i&)I 
.~ witht=Zandx=T-&. ~~ 

Thus (1) transforms to a complex modified Kdv-type equation: 

In order to integrate equation (3) by IST we consider the following eigenvalue . 
problem : 

-_ 
ax 

where 

'5' is a c( 

-ic 0 U 

U= 0 -ic U* 

(-U* -u ic) 

(4) 

mn vector: ('PI, Y2,  'Pi)' ar 5 is a time indepen it spectral parameter. 
With the time evolution of the eigenvector Y given by: 

(6) -- ay- VY 
at 

where 



+&(uu,*-uxu*) 0 -1 0 (1 :I (7) 

the compatibility condition of equations (4) and (6) is equivalent to (3). We note that 
IST with 3 x 3 U-V matrix representation have been discussed in [U-291. 

Next for a real eigenvalue we introduce the Jost functions 9,'"(x; c) and ~ ' ~ ( x ;  0, 
i= 1,2,3 which satisfy the following asymptotic conditions: 

. 

where y1=y2=-1 and y3=l. Because for real 5 the matrix U is antihermitian 
(U+=-@ we have: 

for any pair of solutions of (4) corresponding to the same eigenvalue e. Now we 
introduce the scattering matrix a = [&g(c)]j,j=l.23 via the following relationship: 

( i i j  

between the two bases {9('(x; c)}r=l.2,3 and ( ~ ' ~ ( x ;  c)}i=1,2.3 in the space of solutions 
of the equation (4). Because the matrix a is uuimodular (det a = 1) and taking into 
account that the two bases {9'"(x; c)}i=l,2,3 and {y'"(x; <))i=1,+3 are orthogonal we 
obtain that the matrix a is unitary, i.e., a+= a-'. Using this property and equation 
(1 1) one can easily find the following equations: 

[uZ(c)p(')  eiP-a12(C)p(') e'@l/a:3(()= y'" e i ~ x - [ a ~ 1 ( ( ) / a ~ j ( ~ ) ] y ' 3 '  e'" 
[-a21(c)9(1) eic"+all(c)rp(2' eicx]/a:3(c)= y(2) e'sx- [af2(c)/a&(c)]y(3) ecx 
9(3) e-Kx/a 33 (e ) 

(124 

(12b) 

+ [a31(c)/a33(<)lw"' e-igx+ [ad) /a33(c) I~ '~ '  e-? = w'3' e-'" (124 

Using the same teqhnique as in 1281 one can show that 9'') eicx, ,,, eicx, y'" e-iF, 
all(c), an(C), aZl(C), az2(c) and af;(c*) can be analytically continued in the upper 
complex half plane (Im (>O) and y"'e'(X, y'*) e'5x, 9(') e-icx, aL(c*), 
a&((*), a&(<*) and aS3(c) can be analytically continued in the lower - complex half 
plane (Im C < 0) if 1111 tends to Zero sufficiently fast as 1x1 + m . 
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From the explicit form of the matrix U we can deduce the following symmetry 
relations between the elements of the scattering matrix a : 

a d [ )  = a%(-(*) a d o  = a&(-C*) a340 = ab(-T*) 
a&) = &(-C*) a&) =a%-<*). (13) 

Next we derive the Gel'fand-Levitan-Marchenko (GLM) equations. To this aim we 
introduce the integral representations of the Jost functions: 

where K("(x, s) = (K?(x, s), Ki0(x, s), K$"(x, s))' with hSdm K"(x, s) =0, i= 1,2,3. 
A direct consequence of the symmetry relations (13) is the property that the zeros 

of a33(c) are either on the imaginary axis in the lower complex half plane or located 
symmetrically with respect to the imaginary axis at (C*, -0, Im C>O. In the following 
we assume that an((') has N pairs of simple zeros located symmetrically with respect 
to the imaginary axis at (C:, -&), Im Ci>O, i= 1,2,. . . , N. 

For C = (7 we have 

q y x ;  Ti*) =c!'ly'"(x; C:)+cgy'Z'(x; c:) (154 

and for c = - C i ,  by using the symmetry relations (13) we obtain: 

9'3'(x; -<,) = Cgy"'(x;  -[;) +c$?'y'2'(x; -5;). (156) 

In the same manner as in [26] we 6nd from equations (12a-124 the following GLM 
equations: 

+jxm dsK"'(x, s)F(s+y) + &K'Z'(X, s)F*(s+y) =o jxm 
respectively, for y > x ,  where F(z) is given by: 

where prime denotes the derivative with respect to C. 
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Taking into amount the integral representation for v!” (x ;  C) and using (4), we find 
the following expression for, the ‘potential‘ u(x): 

= - 2 ~ ; 3 ) ( ~ ,  x) .  (18) 

From equations (16a-16c) we finally obtain the GLM equation for K?(x,y): 
I 

f$)(x,  y )  +F(x+y)  + I dz Ki3)(x,  z) 

From the asymptotic expression of the matrix V(lxl+m) it is easy to determine the 
time-dependence of the scattering data: 

~ 3 3 ( 5 , 0  = a33(C, 0) a&> 0 =a&-, 0) i ,j=1,2 

adC, 0 = a3,(C, 0) exp(-8isC30 a&, 0 =a&, 0) exp(8M3O 

c&t) = c:i7(0) exp(-SisC,f’t) i= 1,2. (20) 

Now we can analyse the case (i) when the diagonal element a d l )  of the scattering 
matrix has only one zero on the imaginary axis at C* = -iq/Z, q > 0. In addition we put 
a3](C)=0 for real 6. 

In this case the function F(z) is: 

F(z)=a(t) exp -- ( 1”) 
where 

Considering that the function K,’3’(x,y) has the form 

K;3’(x, y )  = -%) exp(-qy/2) 
from equations (18)-(21) we obtain the singlesoliton solution for (3): 

7 u(x. t)=-sech[q(x- &q2t-x0)] eim 

where x o = ( l / q )  In (4 la(O)l/q) and q%=arga(O). 
Jz 

Thus we can write the single-soliton solution of (1) in the form: 

where To = xo . 

(see equations (38) and (51) in [26]). 

a33(C) has two zeros (e, -c) where C=(-c+iq)/2 with 5,1130. ~ ~ 

We mention that this soliton solution was also obtained in [26] in the limit f -0 

Next we discuss the case (ii) when the diagonal element of the scattering matrix 
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3.0 

T 
Figure 1. The shape of 141 as a function of T for the breather soliton solution (27), with 
q=2, K=$,  %=-%=O. Here c=l  (solid line) and g=5 (dottedline). 

In order to 6nd the general soliton solution in this case we consider that the function 
K,(3)(x, y )  has the following expression: 

K { ~ ) ( X ,  y )  = L ( X )  e-ic*y+ ~ ( x )  e’”. 

i~(z)=a( t )  e-’c”+b(t) 25’ (25) 

(24) 
As in the previous case we take a3,(c)=0 for real 6 so that the function F(z) is: 

where a(t) =ic31(t)/a$&*) and b(t) =ic&(t)/ai3(-{). 
In this case. the general single-soliton solution is: 

where 
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T 
F w e  2. The shape of 141 as a function of T for the general single soliton solution (2.5). 
with v=2,  Ib01=1, R=$%=O. (a) 5-1 ,  (b) <=2, (c)’ 5=5. Here Ib.l=O (solid line), 
Ibol=O.ZS (dashed line) and lbol=O.75 (dotted line). 
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In order to obtain the 'breather' soliton solution one can choose laol=lbol= K and 
arg uo = -arg bo. With this choice the soliton solution is: 

(27) 
~e-~[qcos(B+2@)+41C1 s i n ( B + @ ) ] - ~ ~ ~ ) 2 c o s B c o s h ( A +  w )  

K~ e-"( 1 +cos2 4) + q2 cos[ t (B+ 4)] - 81<lz cosh2(A + iy) 
u(x,  t)=2q , , , , , , , 

where yl = In V/$K and @ =arg <. 
This solution represents a pulse moving with the velocity &(q2-3C2) performing 

internal oscillations. Then the breather-like soliton solution of (1) in the case 
: p 2  :p,= 1 :6 :3 can be obtained from (27) via the transformation (2). In the limit 

c = O  the 'breather' soliton solution of (1) becomes the single-soliton solution (23) with 
To, 90 modi6ed in view of our choice (25). 

We notice that if one chooses ~ u o ~ = K ,  lbol=O one can find the two-peak-soliton 
solution obtained in 1261 (see equations (38)-(39) in [26]). In a similar way one can 
construct the N-soliton solution of (1) with PI :p2 : p 3  = 1 : 6 : 3. The N-soliton solution 
written down in [26] was obtained only for a particular choice of F(z), i.e., c8'=0, i= 
1,2, . . . , N in (17). 

In figure 1 we show the shape of the breather soliton solution (27) for the parameter 
values K =$, q = 2, 90 = -qb= 0; Figure 2 shows the shapes of the general single soliton 
solution (26) for q = 2, pa= qb= 0, laol= 1, and for different values of 5 and lbol. 

In spite of the fact that the ratio among the coefficients of the higher order terms 
PI :p2 :p1 in the PNLSE (1) is k e d  at  1 :6 :3, by an appropriate choice of the fibre 
parameters this situation can be realized in the femtosecond regime [6] so that we expect 
that the single soliton in the form (23) could be observed experimentally. A detailed 
analysisofthecompleteintegrablee~~s~(1) forthecasep, :pz:p3=l  :6:3in thefibre 
optics context will be published elsewhere. 
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