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Abstract. Using the inverse scattering transform we found one-parameter and the breather-
" like four-parameter soliton solutions of a perturbed nonlinear Schrédinger equation which
describes the pulse propagation in optical fibres in the femtosecond regime.

Optical solitons in fibres are pulses which propagate without any change in pulse shape
or intensity. Due to their remarkable stability properties, optical solitons are now at,
the centre of an active research field of nonlinear wave propagation in optical fibres
f1-9]. Recently [4-8], by using an asymptotic perturbation technique it was shown that
the pulse propagation in optical fibres in the femtosecond regime can be fairly described
by the perturbed nonlinear Schrédinger equation (PNLSE):
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where ¢ represents a normalized complex amplitude of the pulse envelope, Z is a
normalized distance along the fibre, T is the normalized retarded time {(we employ a
frame of reference moving with the pulse with its group velocity), € is a small parameter
and 8, B2, B: ate the real normalized parameters which depend on the fibre character-
istics (f3; is the coefficient of the linear higher order dispersion effect and B, B; are
overlap integrals [6]). A new model, to include saturation effects of the Kerr non-
linearity, has been recently derived [10], in which the governing equation is a combina-
tion of the exponential nonlinear Schrédinger equation (NLSE) and the derivative one.
For £=0 in equation (1) we obtain the standard ~NLSE, which is one of the complete
integrable nonlinear partial differential equations. Its solutions can be obtained by
different methods, e.g., by using the inverse scattering transform (1s1) [11-17], the Lie
group theory [18], by constructing a certain completely integrable finite dimensional
dynamic system whose solutions determine the exact solutions of the NLsE [19-21], etc.
We mention also the recent work on I1sT perturbation theory for soliton propagation
and the first and the second-order perturbation expansion for soliton, propagation in
optical fibres [22].
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To the best of our knowledge for arbitrary parameters §;, 2, B the equation (1)
is not completely integrable, but for an appropriate choice of these parameters it can
be integrated by the 1sT. Thus the cases when f§,: 52 :8:=0:1:1 (the dervative NLSE
type D), B1:B82:8:=0:1:0 (the derivative NLsE type II) and 5, :52:58:=1:6:0 (the
Hirota equation) were solved in [23], [24] and [25], respectively.

Recently, in [26] it was shown that the case 8, : §,:6;=1:6:3 is also integrable by
using the 1sT. We mention that in [26] the authors did not obtain the most general
single-soliton solution because they did not take properly into account the symuetry
properties of the matrix I/ in the U-V representation for the equation (1).

In the present letter we find for this case the general single-soliton solution classified
by the following criteria:

(i) the diagonal element of the scattering matrix @33({) has only one zero on the
imaginary axis;

(ii) the diagonal element of the scattering matrix o3:({) has two zeros located at
the positions symmetric with respect to the imaginary axis.

With the specific choice of the parameters which describe the general solut1on we
find the ‘breather’ smgle-sohton solution for (1).

In order to integrate (1) in the case fB;:f6,:8;=1:6:3 we make, as in [26], the
following transformation:

u(x, )=q(T, Z) cxp[— t-s-;( T— %):l {2)

with t=2 and x=T—1%
Thus (1) transforms to a complex modified Kav-type equation:

du &u 6lu|2)
—+g +6 =0, 3
&t (6 Bl l ox 3)

In order to integrate equation (3) by 1sT we consider the following eigenvalue
problem:

& e @

ox
where
-i& 0 u
v=| 0 -it o (5)
—u* —u ¥

¥ is a column vector: (W1, W2, ¥3) and ¢ is a time independent spectral parameter.
With the time evolution of the eigenvector W given by:
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where
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1 0 0 u
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the compatibility condition of equations (4) and (6) is equivalent to (3). We note that
I1sT with 3 X3 U~V matrix representation have been discussed in [27-29].

Next for a real eigenvalue { we introduce the Jost functions ¢®(x; ¢) and lyw(x o),
i=1, 2, 3 which satisfy the following asymptotic conditions:

B8 xmmeo e
w(x; £) — 5,67 x> - O

where y1=y2=—1 and y;=1. Because for real { the matrix U is ant1herm1t1an

(U"=—0) we have:
a_ax (‘f{l)+‘1'(2))=0 ’ ’ (10)

for any pair of solutions of (4) corresponding to the same eigenvalue {. Now we
introduce the scattering matrix @ =[@;({)];;=123 via the following relationship:

3 .
00 )= 3 ey Dw(x: ) (i1}
i=1

between the two bases {@'?(x; {)};=125 and [y @(x; ¢)}i=125 in the space of solutions
of the equation (4). Because the matrix @ is unimodular (det @ =1) and taking into
account that the two bases {p®(x; £)}i=123 and {w(‘)(x {)}i=123 are orthogonal we
obtain that the matrix ¢ is unitary, i.e., a*=a"". Using thls property and equation
(11) one can easily find the following equations:

[2220)e™ €7 = a (D)™ &1/ ak(0) =¥ & — [ahi({)/ aH(DIv® & (12a)
[—aa(D)e™ €+ a1 ()P 71/ak($) = v & — [aB(0)/af(Oy® (126)
90(3) e faas(d)

=y ¢ + o (©)/as(OIY® ¢+ [o(0) /(I . (126)

Using the same technique as in [28] one can show that ¢ ¢**, tp‘z) e, p® gmie",

an($), (), an(l), axn(l) and ef(L™) can be analytically continued in the upper
complex half plane (Im{>0) and ', y® %, P e, (™), ah(l™),
a$i($™), e%($™) and a@:5({) can be analytically continued in the lower complex half
plane (Im ¢ <0) if |u] tends to zero sufficiently fast as |x]— 0.



L760 Letter to the EditO(

From the explicit form of the matrix U/ we can deduce the following symmetry
relations between the elements of the scattering matrix a:

an{)=aH(—L™) an(l) =ah(—¢") as()=aH(—")
as({) = a$h(—{*) an(f)=e$(—). (13)

Next we derive the Gel’fand-Levitan-Marchenko (GLM) equations. To this aim we
introduce the integral representations of the Jost functions:

wiP(x; ) =8,67%%+ _[ ds K{2(x, 5) €74 (14)

where K(x, 5) = (K{(x, 5), K§2(x, 5), K{2(x, $))’ with lim,_., K(x, $)=0, i=1,2, 3.
A direct consequence of the symmetry relations (13) is the property that the zeros
of as3(0) are either on the imaginary axis in the lower complex half plane or located
symmetrically with respect to the imaginary axis at ({*, —=¢), Im {>0. In the following
we assume that @13({} has A pairs of simple zeros located symmetrically with respect
to the imaginary axis at ({F, ~{)), Im {;>0,i=1,2,...,N.
For { =L} we have

§¥0x; =Sy £ + Qy P x; £F) (15a)
and for {=—{,, by using the symmetry relations (13:) we obtain:
0P0x; =50 =y (x; =)+ ey P ). (155)

In the same manner as in [26] we find from equations (12a-12¢) the following GLMm
equafions:
0 o ‘
KM%, - 0 F*(x+y)—J ds K®x, s)F¥(s+y}=0 (16a)
1 x

0 o
KEPx, »)—| 0 ) F(x+») —J ds K®(x, s)F(s+y)=0 {(16B)
1 x

1 0
E®x, » +(0) F(x+y)+(l)F*(x+y)
0 0

+ r ds KV(x, s}F(s+y) +r ds K@ (x, HF*(s +y)=0 (16¢)

respectively, for y>x, ‘where F(z) is given by:

F(z)=§ i[__cgi_e—ir:‘,:,l_ c )eie;,.::l_*_jw 4 an(f) S (17)

1 Lass(y a3:(—¢; —0 27 €33(5)

where prime denotes the derivative with respect to £.
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Taking into account the integral representation for y'®(x; ¢) and using (4), we find
the following expression for, the ‘potential’ u(x):

u(x)=—2K(x, x). (18)
From equations (16a-16¢) we finally obtain the LM equation for K (x, y):

[=4]
EPx, N+Fx+y)+ J dz K®x, 2)

X

xjwds[F*(z+s)F(s+y)+F(z+s)F*(s+y)]“—'0. (19

From the asymptotic expression of the matrix V(|x|—c0) it is easy to determine the
time-dependence of the scattering data:

a33(L, 1) =as(Z, 0) al{l, )=ai({,0) ij=1,2
as(Z, 1) =a3({, 0) exp(—8iel’n) as(L, =aa(S, 0) exp(8iel?)
()= c57(0) exp(—8ielFr) i=1,2. (20)

Now we can analyse the case (i) when the diagonal element 13(Z) of the scattering
matrix has only one zero on the imaginary axis at *=—izn/2, > 0. In addition we put
231({) =0 for real {.

In this case the function F(z) is:

F(z)=al?) exp(—%) (1)
where
ic31(2) .
a33(—in/2)
" Considering that the function K{(x, y) has the form
KP(x, y)=K(x) exp(~ny/2)
from equations (18)-(21) we obtain the single-soliton solution for (3}:

a(ty=

u(x, )= x sech[n(x— et —xo)] €' (22)

N

where xo={(1/7) In (v2 |a(0)|/n) and go=arg a(0).
Thus we can write the single-soliton solution of (1) in the form:

o(Z, T) =% sech{n[T— (an2+é)2 — To]} exp{i[é ,(T_E.Za)-F gp{l} 7 (23)

where To=1xg. N
We mention that this soliton solution was also obtained in [26] in the limit £—0
(see equations {38) and (51) in [26]).
Next we discuss the case (ii) when the diagonal element of the scattering matrix
a33(£) has two zeros (£¥, —{) where £ =(—£+in)/2 with £, n=0.
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Figure 1. The shape of |4] as a function of T for the breather soliton solution (27), with
n=2, k=42, ¢,=—p,=0. Here £=1 (solid line) and £=5 (dotted line).

In order to find the general soliton solution in this case we consider that the function
K®(x, ¥) has the following expression:

K (x, y)=L(x) e + M(x) &, (24)
As in the previous case we take ¢3({) =0 for real { so that the function F(z) is:
F(z)=a(t) e 5"+ b(t) & (25)

where a(f) =ici(2)/@5(4™) and b(2) =ich(r)/els(—{).
In this case the general single-soliton solution is:

Zei(%+wb)/2 _ ]agb ]e—zu-ﬁs) (]a |2+|b [2) e_u i
u(x, f)‘—"‘——A—e A{Iao||: > 22 - Tig —1|e”
[ aobol € 2 (lao*+ o) e ™
L ¢ 20 in
B —2{A—iB) 2 2y =24 .
+ ol laoho] € _ _ (laol +|bg| Ye _1] o
L 28 7
\ B aob e-—Z(A+iB) a 2+ IA 2 e——?_.-f eiB
g o _ (Jadl L) ]_} 26)
L 4 28 in
where
Ae I:laﬁb{)l e—2(A-iB)_(IaOI2+ lbﬂlz) e—-ZA_ 1]2
zg*z 172
__1_ [|aobo| e—zca-is)“([a0]2+lbo]2) e—z..q] 2_
n* ¥ 2

A=1q[x— e(*—3EM1), B=E[x+ e(E =31+ (0 — @) /2, ao=a(0), bo=5b(0), @,=
arg a(0), and g, =arg 5(0).
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Figure 2. The slhape of |g| as a function of T for the general single soliton solution (26),
with 7=2, |al=1, p.=¢,=0. (a) =1, (b) £=2, (c) £=5. Here {h|=0 (solid line),
lbo}=10.25 (dashed line} and |bo|=0.75 (dotted line).
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In order to obtain the ‘breather’ soliton scolution one can choose (@ =|bs| = and
arg ay=—arg b,. With this choice the soliton solution is:

Kk ¢ [n cos(B+2¢) + 4] sin{ B+ $)] —4/2ILF cos B cosh(A + y)
e 24(1+cos® ¢) + n° cos[2(B+ §)] —~8|¢|* cosh® (A +w)

where ¥ =In 7/./2x and ¢=arg .

This solution represents a pulse moving with the velocity &(n°—3£%) performing
internal oscillations. Then the breather-like soliton sclution of (1} in the case
Bi1:B2:B:=1:6:3 can be obtained from (27) via the transformation (2). In the limit
£=0 the ‘breather’ soliton solution of (1) becomes the single-soliton solution (23) with
To, 9o modified in view of our choice (25).

We notice that if one chooses {ag| =k, [bo/=0 one can find the two-peak-soliton
solution obtained in [26] (see equations (38)-(39) in [26]). In a similar way one can
construct the N-soliton solution of (1) with #, : f2:f3=1:6:3. The N-soliton solution
written down in [26] was obtained only for a particular choice of F(2), i.e., ¢ =0, i=
L,2,...,Nin (17).

In figure 1 we show the shape of the breather soliton solution (27) for the parameter
values x =4/Z, =2, ¢.=—q@,=0. Figure 2 shows the shapes of the general single soliton
solution (26) for 1=2, @,= @,=0, |ag|=1, and for different values of £ and |&].

In spite of the fact that the ratio among the coefficients of the higher order terms
B1:82:8; in the prvise (1) is fixed at 1:6:3, by an appropriate choice of the fibre
pararpeters this situation can be realized in the femtosecond regime [6] so that we expect
that the single soliton in the form (23) could be observed experimentally. A detailed
analysis of the complete integrable pNLSE (1) for the case 8, : 2 : B:=1 :6:3 in the fibre
optics context will be published elsewhere.

u(x, £y=2n

@7
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